Industrial inline PVD metallization for highly efficient crystalline silicon solar cells

Jan-Frederik Nekarda, Philip Hartmann, Dirk Reinwand, Ralf Preu
Fraunhofer Institute for Solar Energy Systems ISE

2nd Workshop on Metallization for Crystalline Silicon Solar Cells
Constance, 15th of April 2010
Status in the year 2003

• Most highly efficient solar cells are metalized on front & back by means of PVD metallization!

But:
Status in the year 2003

• Most highly efficient solar cells are contacted on front & back by means of PVD metallization!

But:
• No industrial machine available for such processes

and even
Status in the year 2003

- Most highly efficient solar cells are contacted on front & back by means of PVD metallization!

But:

- No industrial machine available for such processes

and even

- No idea what method is the best: Sputtering? Thermal evaporation? E-gun evaporation?
Project “INKA”

- Period of time: 2003 – 2006
- Cooperation between Applied Materials and Fraunhofer ISE

Results:

1. All investigated methods as sputtering, thermal evaporation and e-gun evaporation have about the same efficiency potential.
2. Thermal evaporation is the best economic solution
3. Designing and constructing ……
Aton 500

- Pilot line machine
- Throughput of 540 W/h (156 x 156 mm²)
- Evaporation unit for the deposition of Al
- Sputter unit for 2 different metals solderable stack

Entrance Chamber | Vac. 1 Chamber | Vac. 2 Chamber | Evap. Chamber | Transfer Chamber | Sputter Chamber | Vac. 3 Chamber | Vac. 4 Chamber | Exit Chamber
We use Aton 500 for:

- Sputtering front side contacts
- Sputtering solderable layer
- Evaporation of rear side metallization of PERC, back contact back junction and …
- LFC cells
We use Aton 500 for:

- Sputtering front side contacts
- Sputtering solderable layer
- Evaporation of rear side metallization of PERC, back contact back junction and ...
- LFC cells

What needs the metallization layer to look like in the special case of laser fired contacts?
Outline

• Deposition homogeneity < 20 %
• Provide sufficient lateral conductivity
 What layer thickness do we need?
• No harming influence on passivation quality (SiO$_2$)

• → Perfect cell results
Homogeneity

- Adjustable by different wire velocities
- Homogeneity on one 156x156 mm² wafer: ~ 4.5 % (64 m. p.)
- Homogeneity on one tray (9 wafer): ~ 6.3 % (576 m. p.)
- Homogeneity good enough for LFC application
Sheet resistivity ρ – what layer thickness do we need?

- $\rho = R_{sh} \times d$
- Measuring of the thickness d by means of mechanical profilometer and
Sheet resistivity ρ – what layer thickness do we need?

- $\rho = R_{sh} \times d$
- Measuring of the thickness d by means of mechanical profilometer and SEM pictures
- Local measuring of the sheet resistance R_{sh} by four point probe.
- $\rho = 32 \pm 1 \, \text{n}\Omega \cdot \text{m}$
- \rightarrow 20 % higher than bulk Al. (26.5 nΩ·m)
- \sim 10x lower than screen printed Al layer
\(\Delta \eta = \frac{\rho \cdot j_{\text{gen}} \cdot I_x^2}{12 \cdot d_{\text{Al}} \cdot U_{\text{mpp}} \cdot b^2} \cdot \eta \)

(PhD Thesis: Andreas Grohe. ISE 2008)

- \(b = 2 \)
- \(\rho = 32 \text{ n}\Omega \text{m} \)
- \(J_{\text{gen}} = 35 \text{ mA/cm}^2 \)
- \(U_{\text{mpp}} = 560 \text{ mV} \)
- \(\eta = 18 \% \)
η-losses in dependence on the layer thickness

- $b = 2$
- $\rho = 32 \text{n}\Omega\cdot\text{m}$
- $J_{\text{gen}} = 35 \text{mA/cm}^2$
- $U_{\text{mpp}} = 560 \text{mV}$
- $\eta = 18\%$
Investigated deposition processes

Different deposition rates A_{dep}:

- Layer thickness: 2 μm
- Rates A_{dep}: 0.5 – 6 μm*m/min
- "Lifetime samples"
- Highly efficient solar cells
- Pre experiments showed no influence on homogeneity and sheet resistivity ρ

<table>
<thead>
<tr>
<th>process</th>
<th>thickness</th>
<th>v_{tray}</th>
<th>deposition rate A_{dep}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[μm]</td>
<td>[m/min]</td>
<td>[μm*m/min]</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.25</td>
<td>0.5</td>
</tr>
</tbody>
</table>

© Fraunhofer ISE
Influence on SiO₂ passivation

- 40 symmetric samples
- Shiny etched FZ 1 Ω·cm material
- Deposition rates 0.5 – 6 µm*m/min (processes 1-5)
- QSSPC measurement with/without Al-neal
- 100 nm “dry” SiO₂
Influence on SiO₂ passivation

after metallization:
• similar level as before

after Al-neal:
• Very high lifetimes $t > 1\text{ms}$
• Lifetime increases with increasing A_{dep}

![Graph showing lifetime τ vs. deposition rate A_{dep}]
Solar cell results

High-\(\eta\) cell structure:

- Shiny etched FZ 1 \(\Omega^*\)cm
- 7 sized 2 x 2 cm\(^2\) cells per wafer
- Different deposition rates
- Reference process with e-gun metallization
- Tempering variation
- Laser fired contacts (LFC)
Influence of tempering (hotplate)

- reference e-gun level up to 680 mV (SunsVoc)
- voltage level increases until \(T = 450 \degree C \)
- \(@T > 350 \degree C \) voltage can decrease
- reference level is reached at \(T = 400 - 450 \degree C \) for \(t = 1-5 \) min.
Solar cell results

<table>
<thead>
<tr>
<th>Process</th>
<th>Deposition rate</th>
<th>V_{OC}</th>
<th>J_{SC}</th>
<th>FF</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[μm*m/min]</td>
<td>[mV]</td>
<td>[mA/cm²]</td>
<td></td>
<td>[%]</td>
</tr>
<tr>
<td>E-gun</td>
<td>21.60.806</td>
<td>39.56</td>
<td>678.7</td>
<td>0.806</td>
<td>21.6</td>
</tr>
<tr>
<td>Aton</td>
<td>21.80.819</td>
<td>39.14</td>
<td>679.2</td>
<td>0.819</td>
<td>21.8</td>
</tr>
<tr>
<td>Aton</td>
<td>21.60.816</td>
<td>39.27</td>
<td>675.2</td>
<td>0.816</td>
<td>21.6</td>
</tr>
<tr>
<td>Aton</td>
<td>21.60.805</td>
<td>39.46</td>
<td>678.9</td>
<td>0.805</td>
<td>21.6</td>
</tr>
</tbody>
</table>

Best cells of batch:

- High efficiency potential over a wide range of different deposition rates
- 21.8 % are best efficiency ever for LFC cell on 1 Ω*cm material
Summary

- Set up of an industrial pilot line system for the evaporation of aluminum layer for LFC cells
- Improved overall cell process
- Shorter temper process
- Cell efficiencies up to 21.8 %
- Best LFC cell ever on 1 Ω*cm material
Thank you for your attention…

… and also special thanks goes to Applied Material for the successful cooperation as well as to the BMU for the financial support of this work!