Seed layer printed contact formation for highly doped boron emitters of \textit{n}-type solar cells with front side junction

Armin Richter, Matthias Hörteis, Jan Benick
Fraunhofer Institute for Solar Energy Systems ISE

2nd Workshop on metallization of crystalline silicon solar cells
Konstanz, 14th April 2010
Outline

- Motivation
- Metallization approach
- Measured specific contact resistance
- Shunting behavior of the contact formation
- First solar cell results
- Summary
Why *n*-type silicon for solar cell fabrication?

- Superior tolerance on common impurities (e.g. iron)

 ![Graph showing recombination lifetime vs. Fe concentration](image)

 \[N_{A/D} = 1.5 \times 10^{16} \text{cm}^{-3} \]

 generation = 0.1 suns

 Auger limit included

- No light induced degradation due to B-O-pairs as in *p*-type Cz-Si

 ![Graph showing lifetime vs. illumination time](image)

 P-doped n-type Cz-Si

 \(3.5 \ \Omega\text{cm} \)

 B-doped p-type Cz-Si

 \(3 \ \Omega\text{cm} \)

D. Macdonald, JAP 2005

J. Schmidt, 22th EUPVSEC
Boron Emitter Passivation
Atomic Layer Deposition of Al\textsubscript{2}O\textsubscript{3}

- Excellent performance at cell level
- Only very thin ALD layer necessary

<table>
<thead>
<tr>
<th>V_{oc}</th>
<th>J_{sc}</th>
<th>FF</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mV]</td>
<td>[mA/cm2]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
</tbody>
</table>

Best cell 704.5 41.1 82.4 23.9*

*Confirmed at Fraunhofer ISE CalLab

Benick et al., new result
The solar cell structure

textured front side

front metallization

SiN$_x$ antireflection coating

passivation layer

p^+ emitter (boron doped)

n-type base

n^+-doped BSF

rear metallization
Firing stable passivation for p^+ doped boron emitters

Emitter profile

- Shallow industrial-type boron emitter:
 - $R_{sh} = 90 \, \Omega/sq$
 - Surf. conc.: $8 \times 10^{19} \, \text{cm}^{-3}$
Firing stable passivation for p^+ doped boron emitters

Al$_2$O$_3$ passivation

- Passivation by atomic layer deposited Al$_2$O$_3$
- Excellent J_{0e} values of \(\sim 45 \, \text{fA/cm}^2 \) independent of firing temperature
- Generally allows for high-efficiency cells

![Graph showing emitter saturation current density vs. firing temperature](image-url)
Our front side metallization approach

- Necessities for high-efficiency cells regarding front side contact:
 - Low contact resistance
 - High lateral conductivity
 - Thin fingers

- A promising approach:

 2 layer metallization

- printed seed layer
- fired seed layer
- plated contact
The two layer metallization

Aerosol jet printed seed layer after electro-plating

- Thin seed layer: 17 µm width
- Total contact width after plating: 37 µm
- Plating leads to an excellent aspect ratio
The two layer metallization
Aerosol jet printing technique

- Contactless printing technique
- Generation of an aerosol
- Metal aerosol is focused on the substrate without getting into contact with the printing unit

➔ Successful application on n^+ emitters of p-type solar cells leading to 21.1%
Specific contact resistance on p^+ emitters

Test structures

- Specific contact resistance was measured by means of TLM measurements on
 - planar uncoated emitters
 - planar coated emitters
 - textured coated emitters

- Processing of the test structures:
 - Aerosol jet printed seed layer with silver ink (adapted p-SISC based on SISC ink for n-emitter, see talk M. Hörteis)
 - Contact firing at different temperatures in a rapid thermal processing furnace
 - Electro-plating of 10 µm silver
Specific contact resistance on p^+ emitters

Emitter profiles

Contact formation on:

- **Shallow industrial-type boron emitter:**
 - $R_{sh} = 90 \, \Omega/sq$
 - Surf. conc.: $8 \times 10^{19} \, \text{cm}^{-3}$

- **Deep high-efficiency type boron emitter:**
 - $R_{sh} = 135 \, \Omega/sq$
 - Surf. conc.: $6 \times 10^{18} \, \text{cm}^{-3}$
Specific contact resistance on p^+ emitters
Results on planar, uncoated emitters

- Shallow emitter (90 Ω/sq):
 - $\rho_c < 1$ mΩ cm2 at low firing temperatures
 - Excellent contact possible

- Deep emitter (135 Ω/sq):
 - $\rho_c > 25$ mΩ cm2
 - No adequate contact achieved
Specific contact resistance on p^+ emitters
Results on coated 90 Ω/sq emitter

- Planar, Al$_2$O$_3$/SiN coated boron emitter:
 - $\rho_c \sim 1 \text{ m}\Omega \text{ cm}^2$ at a firing temperature of 730 °C
 - Contact firing through the Al$_2$O$_3$ (10 nm) / SiN$_x$ (60 nm) layer stack possible
Specific contact resistance on p^+ emitters
Results on coated 90 Ω/sq emitter

- Planar, Al_2O_3/SiN coated boron emitter:
 - $\rho_C \sim 1 \, \text{m}$Ω$ \text{cm}^2$ at a firing temperature of 730 °C
 - Contact firing through the Al_2O_3 (10 nm) / SiN$_x$ (60 nm) layer stack possible

- Textured, Al_2O_3/SiN coated boron emitter:
 - $\rho_C \sim 1 \, \text{m}$Ω$ \text{cm}^2$ at a firing temperature of 750 °C
 - Minimum of ρ_C at ~750 °C
Shunting behavior on 90 Ω/sq emitter
SunsVoc measurements

→ Significant shunting of the 0.3 µm deep emitter at firing temperatures >750 °C
Shunting behavior on 90 Ω/sq emitter
SEM image of the contact interface on the planar, coated emitter

- Fired at 700 °C
- Fired at 840 °C
First results on solar cells

- **Bulk:** 1 Ω cm n-type FZ-Si (size 20 x 20 mm²)
- **Rear:**
 - Phosphorus BSF
 - 2 µm evaporated Al
- **Front:**
 - Random pyramids
 - Shallow 90 Ω/sq emitter
 - Al₂O₃ (10 nm) / SiNₓ (60 nm) stack
 - Aerosol jet printed seed
 - Contact formation at 750 °C
 - Electro-plating of 10 µm Ag
- Low PFF (78%) due to insufficient edge isolation

<table>
<thead>
<tr>
<th>V_{oc} (mV)</th>
<th>J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>645</td>
<td>37.7</td>
<td>76.0</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Summary

- Very low specific contact resistance ρ_C of $\sim 1 \text{ m} \Omega \text{ cm}^2$ on shallow 90 Ω/sq emitter for firing the p-SISC ink through the Al_2O_3 (10 nm) / SiN_x (60 nm) layer stack.

- No adequate contact with $\rho_C > 25 \text{ m} \Omega \text{ cm}^2$ on the deep 135 Ω/sq emitter.

- Basically, the contact formation and the crystallite formation behavior seems to be similar to that on n^+ emitters.

- Cells efficiency of 18.5% reached on solar cell level with the shallow 90 Ω/sq emitter.
Thanks for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Armin Richter

www.ise.fraunhofer.de
armin.richter@ise.fraunhofer.de