Reliable double printing of Ag contacts for c-Si cell manufacturing

M. Galiazzo
marco_galiazzo@amat.com

Apr, 14th 2010 - Secondmetal Workshop Konstanz
Outline

1. Double Printing principle
2. Experimental results of DP wafers processed at Baccini lab and Helios production
3. Experimental results of DP in production
Double Printing vs. Single Printing

- SP and DP cell design

- Target: reduce finger width and increase finger thickness
- Standard up-front process flow
- Compatible with existing production lines (3 + 1 printers)

- $I_{sc} \uparrow \uparrow$, $R_s=\approx$, $FF=\approx$, $\eta \uparrow \uparrow$

B. Raabe et al, 20°EUPVSEC Barcelona 2005
DP Simulation

- Screen design optimization model inputs
 - Finger width/thickness, nr
 - Emitter Rsheet
 - Paste conductivity
 - Contact resistance

- Output eff, FF, Isc

- Model predicts 0.27/0.3 abs eff increase from SP with 110um/15um to DP with 80um/25um depending on finger nr

- Finger width ↓↓, thickness↑↑, more fingers required to keep same FF and eff
DP test 1

- Test 90 cells/lot
- 3 busbars
- SP 69 finger, 80um std mesh screen opening, paste A
- DP 65 finger, 80um+80um Esatto Technology® qualified screen, paste A+A
- 0.12 abs eff increase
- -9% paste for DP
- Model exp 0.115 abs eff increase for DP

Table: SP vs. DP design 1

<table>
<thead>
<tr>
<th></th>
<th>width (um)</th>
<th>thickness (um)</th>
<th>aspect ratio</th>
<th>weight (mg)</th>
<th>Pmpp (W)</th>
<th>Umpp (V)</th>
<th>Imp (A)</th>
<th>Uoc (V)</th>
<th>Isc (A)</th>
<th>Rs (mOhm)</th>
<th>Rsh (Ohm)</th>
<th>FF (%)</th>
<th>eta</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP paste A</td>
<td>109.1</td>
<td>27.7</td>
<td>0.25</td>
<td>212.0</td>
<td>3.896</td>
<td>0.519</td>
<td>7.505</td>
<td>0.619</td>
<td>8.003</td>
<td>0.0025</td>
<td>122.6609</td>
<td>78.69</td>
<td>16.01</td>
</tr>
<tr>
<td>DP paste A+A</td>
<td>95.7</td>
<td>38.5</td>
<td>0.40</td>
<td>193.0</td>
<td>3.925</td>
<td>0.518</td>
<td>7.575</td>
<td>0.620</td>
<td>8.075</td>
<td>0.0027</td>
<td>114.5429</td>
<td>78.44</td>
<td>16.13</td>
</tr>
<tr>
<td>difference</td>
<td>-13.4</td>
<td>10.8</td>
<td>0.15</td>
<td>-19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.3</td>
<td>0.12</td>
</tr>
</tbody>
</table>
DP test 2 – Optimized screen design

- 3 busbars screen design
- 65Ohm/sq emitter

- Group 1: SP 69 fingers, 80um std mesh screen, **paste A**
- Group 2: DP 69 fingers, 60um+50um Esatto Technology qualified screen, **paste B+B**
- Group 3: DP 69 fingers, 60um+60um Esatto Technology qualified screen, **paste A+A**

1) 80um

2) 50um
 60um

3) 60um
 60um

156mm multi wafers - Helios
Texturing - Helios
POCI diffusion - Helios
PSG etch - Helios
SiN ARC - Helios
Front side DP – BCS lab
Back side print - Helios
Firing - Helios
Laser isolation - Helios
Testing – Fraunhofer ISE
DP test 2 – Contact resistance

<table>
<thead>
<tr>
<th>TLM sample 1</th>
<th>8597046 TLM sample 1</th>
<th>8597124 TLM sample 1</th>
<th>8618630 TLM sample 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsh [Ω/sq]</td>
<td>62.4937</td>
<td>67.7446</td>
<td>66.5400</td>
</tr>
<tr>
<td>ρ_c [Ωcm2]</td>
<td>0.0013</td>
<td>0.0023</td>
<td>0.0025</td>
</tr>
<tr>
<td>Rc [Ω]</td>
<td>0.2902</td>
<td>0.4885</td>
<td>0.6957</td>
</tr>
<tr>
<td>Rcw [Ωcm]</td>
<td>0.2902</td>
<td>0.4885</td>
<td>0.6957</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TLM sample 2</th>
<th>8597046 TLM sample 2</th>
<th>8597124 TLM sample 2</th>
<th>8618630 TLM sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsh [Ω/sq]</td>
<td>63.4412</td>
<td>65.6175</td>
<td>63.5825</td>
</tr>
<tr>
<td>ρ_c [Ωcm2]</td>
<td>0.0028</td>
<td>0.0030</td>
<td>0.0030</td>
</tr>
<tr>
<td>Rc [Ω]</td>
<td>0.6521</td>
<td>0.8339</td>
<td>0.7852</td>
</tr>
<tr>
<td>Rcw [Ωcm]</td>
<td>0.6521</td>
<td>0.8339</td>
<td>0.7852</td>
</tr>
</tbody>
</table>

Group 1
- $\rho_c = 2 \pm 0.8$ mΩcm2
- TLM contact resistance analysis performed on 2 cells of each group
- Low difference in ρ_c values between groups (due to different finger widths)
- Group 1 shows lowest contact resistance R_C
- Group 1 shows lowest specific contact resistance ρ_c

Group 2
- $\rho_c = 2.6 \pm 0.3$ mΩcm2

Group 3
- $\rho_c = 2.8 \pm 0.3$ mΩcm2
DP test 2 – CoRRescan map

Group 1:
- High quality of contact/emitter
- Homogeneous and low potential drop
- Average potential drop: 4 mV
- Maximum potential drop: 44.4 mV

Group 2:
- Medium/low quality of contact/emitter
- Rather inhomogeneous potential map
- High local potential drops
- Average potential drop: 7.1 mV
- Maximum potential drop: 50.3 mV

Group 3:
- Medium quality of contact/emitter
- Homogeneous potential drop
- Very high local potential drop (corner)
- Average potential: 6.2 mV
- Maximum potential: 152.3 mV
DP Test 2 - R_s-PL Measurements

Group 1:
- Rather homogeneous
- Some finger interruptions
- Edge effects visible

Group 2:
- Inhomogenous appearance
- Firing belt visible
- Right side of wafers higher resistance
- Edge effects visible

Group 3:
- More Inhomogeneous apperance than 2
- Firing belt visible
- No clear side effects visible
- Edge effects visible
DP test 2 – Finger morphology

<table>
<thead>
<tr>
<th>Group</th>
<th>Wafer</th>
<th>Final Dried Print</th>
<th>Width (um)</th>
<th>Thickness (um)</th>
<th>Aspect Ratio</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>91,8</td>
<td>21,6</td>
<td>0,24</td>
<td>0,185</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>76,3</td>
<td>23</td>
<td>0,30</td>
<td>0,17</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>74,7</td>
<td>26,9</td>
<td>0,36</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Group 2: -8% paste consumption
Group 3: -14% paste consumption
DP test 2 – Electrical data

![Graphs showing electrical data](image)

Table: Electrical Data

<table>
<thead>
<tr>
<th>Cell group</th>
<th>Voc</th>
<th>Jsc</th>
<th>Eta</th>
<th>FF</th>
<th>SserL/Df/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mV]</td>
<td>[mA/cm²]</td>
<td>[%]</td>
<td>[%]</td>
<td>[Ω·cm²]</td>
</tr>
<tr>
<td>1</td>
<td>614.3</td>
<td>33.95</td>
<td>16.34</td>
<td>78.34</td>
<td>0.63</td>
</tr>
<tr>
<td>2</td>
<td>617.6</td>
<td>34.34</td>
<td>16.57</td>
<td>78.14</td>
<td>0.72</td>
</tr>
<tr>
<td>3</td>
<td>615.8</td>
<td>34.53</td>
<td>16.56</td>
<td>77.88</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Remarks:

- **Jsc +0.4/0.5mA/cm² - reduced shading**
- **FF -0.2/-0.5% - reduced Rs**
- **Voc +1.5/3mV – reduced contact area and J₀**

Measured @ Fraunhofer ISE
DP test 2 – Results

- ...starting from an aggressive finger geometry for single printing baseline (92um x 22um, aspect ratio 0.26)
- ...achieved an aspect ratio in DP of 0.3-0.36
- Group 2: 0.23% eff increase with -8% paste
- Group 3: 0.22% eff increase with -14% paste
- Other customer demos at BCS lab show eff increase between 0.2% and 0.35%

- Developments
 - Demonstrated aspect ratio in DP of 0.5 (35um x 70um)
 - Create cells with this finger geometry for improved eff gain

- From the LAB to the FAB...
DP production – 12” screen

- 12”, 90um + 90um Esatto Technology qualified screens
- 125mm, mono wafers
- Commercial paste for SP
- 20k prints (1 day)
- Avg 0.2-0.25% eff increase for DP
- Optimized print process
DP production – 15” screen

- 15”, 90um + 90um Esatto Technology qualified screens
- 125mm mono wafers
- Commercial paste for SP (not optimized)
- Production monitor 105k cells (4 continuative days)
- Check for screen deformation/wear leading to misalignment
- Screen change when avg finger width for DP exceeds 125um or mechanical breakage
- Optimized print process
Conclusion / Next steps

- Demonstrated **0.23% abs eff increase for DP** with significant paste saving using Esatto Technology qualified consumables (starting from an aggressive SP baseline)
- Consistent agreement between simulation and experimental data
- Further optimization leads to **>0.3% abs eff increase** (already achieved with customer demos)
- LAB results already transferred successfully to the **production floor**
- Achieved high **screen stability** under optimized printing conditions
- Available **inline process monitoring and closed loop operation**

- **Paste optimization**, especially for high conductivity layer
- Demonstrate benefit of **DP at module level**
- Testing **fine line DP cells** (35um x 60-70um)
- Demonstrate **DP over Selective Emitter** with Esatto Technology
Thanks for your attention!

Dec ‘09

think it. apply it.

March ‘10